Biopersistence of inhaled organic and inorganic fibers in the lungs of rats.

نویسندگان

  • D B Warheit
  • M A Hartsky
  • T A McHugh
  • K A Kellar
چکیده

Fiber dimension and durability are recognized as important features in influencing the development of pulmonary carcinogenic and fibrogenic effects. Using a short-term inhalation bioassay, we have studied pulmonary deposition and clearance patterns and evaluated and compared the pulmonary toxicity of two previously tested reference materials, an inhaled organic fiber, Kevlar para-aramid fibrils, and an inorganic fiber, wollastonite. Rats were exposed for 5 days to aerosols of Kevlar fibrils (900-1344 f/cc; 9-11 mg/m3) or wollastonite fibers (800 f/cc; 115 mg/m3). The lungs of exposed rats were digested to quantify dose, fiber dimensional changes over time, and clearance kinetics. The results showed that inhaled wollastonite fibers were cleared rapidly with a retention half-time of < 1 week. Mean fiber lengths decreased from 11 microns to 6 microns over a 1-month period, and fiber diameters increased from 0.5 micron to 1.0 micron in the same time. Fiber clearance studies with Kevlar showed a transient increase in the numbers of retained fibrils at 1 week postexposure, with rapid clearance of fibers thereafter, and retention half-time of 30 days. A progressive decrease in the mean lengths from 12.5 microns to 7.5 microns and mean diameters from 0.33 micron to 0.23 micron was recorded 6 months after exposure to inhaled Kevlar fibrils. The percentages of fibers > 15 microns in length decreased from 30% immediately after exposure to 5% after 6 months; the percentages of fibers in the 4 to 7 microns range increased from 25 to 55% in the same period.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lung proliferative and clearance responses to inhaled para-aramid RFP in exposed hamsters and rats: comparisons with chrysotile asbestos fibers.

This study compared pulmonary effects of para-aramid respirable-sized, fiber-shaped particles (RFP) (p-aramid fibrils) and chrysotile asbestos fiber exposures in rats. Additional p-aramid inhalation studies were conducted in hamsters to compare species responses. The hamster results are preliminary. The parameters studied were clearance/biopersistence of inhaled p-aramid RFP or size-separated a...

متن کامل

An experimental approach to the evaluation of the biopersistence of respirable synthetic fibers and minerals.

The biopersistence of fibers and minerals in the respiratory tract is an important parameter in the toxicity of those materials. The biopersistence of respirable synthetic fibers and minerals in man can be most closely evaluated in an animal model. While acellular and in vitro systems are important for initial evaluation of solubility and durability, they cannot simulate the dynamics of inhalat...

متن کامل

Safety Evaluation of Rw after Nasal Inhalation in Rats

Asbestos is reported to cause pulmonary fibrosis, and its use has been banned. We examined the biopersistence and histopathological effect of rock wool (RW) fibers in rat lungs by a nose-only inhalation exposure study. Twenty-four rats were exposed to RW fibers for 6 h daily for 5 consecutive days. Six rats each were sacrificed shortly and 1, 2, and 4 wk after exposure, and the fiber numbers an...

متن کامل

Biopersistence of rock wool in lungs after short-term inhalation in rats.

To evaluate the safety of rock wool (RW), an asbestos substitute, we examined the biopersistence of RW fibers in rat lungs based on the changes of fiber number and fiber size (length and diameter) by a nose-only inhalation exposure study. Twenty-four male Fischer 344 rats were exposed to RW fibers at a concentration of 30 mg/m(3) continuously for 3 h daily for 5 consecutive days. Six rats each ...

متن کامل

Comparison of Calidria chrysotile asbestos to pure tremolite: inhalation biopersistence and histopathology following short-term exposure.

The differences between chrysotile asbestos, a serpentine mineral, and amphibole asbestos have been debated extensively. Many studies have shown that chrysotile is cleared from the lung more rapidly than amphibole. In order to quantify the comparative clearance of chrysotile and the amphibole asbestos tremolite, both fibers were evaluated in an inhalation biopersistence study that followed the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1994